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The invention of the Kalman filter is a crowning achievement of
filtering theory—one that has revolutionized technology in countless
ways. By dealing effectively with noise, the Kalman filter has enabled
various applications in positioning, navigation, control, and telecom-
munications. In the emerging field of synthetic biology, noise and
context dependency are among the key challenges facing the success-
ful implementation of reliable, complex, and scalable synthetic cir-
cuits. Although substantial further advancement in the field may
very well rely on effectively addressing these issues, a principled pro-
tocol to deal with noise—as provided by the Kalman filter—remains
completely missing. Here we develop an optimal filtering theory that
is suitable for noisy biochemical networks. We show how the result-
ing filters can be implemented at the molecular level and provide
various simulations related to estimation, system identification, and
noise cancellation problems. We demonstrate our approach in vitro
using DNA strand displacement cascades as well as in vivo using flow
cytometry measurements of a light-inducible circuit in Escherichia coli.
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Recent developments in synthetic biology have enabled a revo-
lution of biomolecular engineering (1, 2), prompting numerous

applications in therapeutics (3–5), biocomputing (6–8), and plant
engineering (9), for instance. However, a variety of practical limi-
tations have to be addressed before the field can achieve its full
promise. Above all, engineered circuits often exhibit a substantial
mismatch between in silico predictions and in vivo behavior (10).
Such mismatch is largely attributed to so-called context de-
pendencies, causing individual cells to behave differently depending
on their intracellular environment (11). The latter can be un-
derstood as the congregation of environmental factors that affect
the target circuit, such as the ribosomal abundance or the cell cycle
stage. Variations of those factors across cells and over time—also
termed “extrinsic noise” (12)—can impair a circuit’s functionality in
an unpredicted way and cause total functional failure.
Because extrinsic noise arises outside a circuit, it can be handled

in a more systematic fashion than intrinsic molecular noise (13),
which is ultimately dictated by biophysical principles. Intuitively, if
an extrinsic perturbation is present, one could in principle apply a
second perturbation that steers the network into the opposite di-
rection such that the two competing effects cancel. This idea is akin
to conventional noise cancellation techniques encountered in
communication systems, where a target signal XðtÞ (e.g., a recorded
voice) is corrupted by noise ZðtÞ (e.g., through wireless trans-
mission) and subsequently reconstructed by reversing the effect of
ZðtÞ in a suitable way (14). Because this requires some sort of
knowledge about ZðtÞ, the most pertinent ingredient to achieve
noise cancellation is a means to estimate dynamically changing
noise signals [ZðtÞ in the example above] from available measure-
ments. A multitude of such estimation techniques—often termed
“optimal filters”—have been developed, driven by applications in
control, telecommunications, and signal processing. However, the
assumptions underlying existing techniques are often incompatible
with the scenarios encountered in molecular biology, such as the
assumptions of linearity or additive Gaussian noise associated with
the well-known Kalman filter (15).
In quantitative biology, optimal filtering and related concepts

have been used in the literature, either to reconstruct biochemical
processes from experimental data in silico (16) or to analyze
whether existing biochemical networks can act as optimal filters

that process intracellular and extracellular signals (17–20). Along
those lines, it has been shown theoretically that the suppression of
noise is fundamentally bounded by the precision at which the noise
can be estimated from the past (21). This underpins the high po-
tential of implementing biochemical estimators that achieve such a
bound. Nevertheless, the use of optimal filters for the de novo
engineering of synthetic networks remains nonexistent.
Conventional statistical methods aim at inferring molecular

signals or parameters based on experimental data, which have
been recorded beforehand through dedicated technical devices
such as flow cytometers or microscopes. In other words, the in-
ference itself is performed in silico by the observing entity. The
goal of this work is to move the observing entity inside a cell or any
biochemical network of interest. To this end, we reinterpret such
estimators as dynamical systems themselves and map their speci-
fication to a list of biochemical reactions.

Theoretical Results
Biochemical Signals and Sensors. Assume a synthetic circuit re-
quires knowledge about the abundance of a biochemical signal ZðtÞ
that it cannot access directly. For instance, ZðtÞ could be an envi-
ronmental perturbation that the circuit has to adapt to or the in-
ternal state of another dynamical system that it aims to control.
In the former case, ZðtÞ does not necessarily have a physical in-
terpretation but rather serves as a phenomenological proxy that
reflects the multitude of noise sources affecting a circuit. The
synthesis rate of a protein, for instance, depends on various factors
(e.g., gene dosage and ribosomal abundance) but itself may be
described reasonably well by a one-dimensional quantity that fluc-
tuates over time (22). For the sake of illustration, we assume ZðtÞ is
a one-dimensional birth–death model with parameters ρ and ϕ
(Fig. 1A); we will be concerned with more general scenarios later in
this manuscript.
Although ZðtÞ is assumed to be hidden to the circuit of interest,

that circuit might have access to indirect readouts of ZðtÞ. For in-
stance, it might be able to recognize specific mRNAs which give an
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indication about the activity of a gene ZðtÞ that cannot be sensed
directly by the circuit. In the simplest case, this indirect readout (in
the following termed “sensor”) could relate to ZðtÞ through a single
catalytic reaction, modeled by the stochastic birth process

Z*
cY Z+ ⋆,

with cY as a rate constant determining the speed of this reaction.
Note that the symbol ⋆ serves as a wildcard that will be concret-
ized later when the sensor is interfaced with the filter circuit.
Implicitly, the sensor reaction carries information about the

unknown ZðtÞ: if one observes many firings in a short amount of
time, one can conclude that ZðtÞ was probably large, and vice
versa. Mathematically, the number of reactions that fired in the
time interval ½0, t� is a random variable that can be described as a
time-varying Poisson process Y ðtÞ with rate cYZðtÞ. The differ-
ential version of this process can be viewed as a random pulse
train dY ðtÞ that has value one only at the sensor firing times and
zero otherwise (Fig. 1B). A complete sensor trajectory consists of
the random reaction times Yt = ðτ1, τ2, . . . , τY ðtÞÞ, as opposed to
most usual readouts that reveal abundances (corrupted by ad-
ditive noise, for instance). Note that the informativeness of the
sensor increases with cY , and from this perspective, large cY are
superior to small cY . At the same time, however, one tries to
keep the energy cost at a minimum to prevent interferences with
the host cell. The resulting tradeoff highlights the need for op-
timal estimators that can extract as much information as possible
from the sensor, especially when cY is small.

Optimal Signal Estimation. The theory of optimal filtering (23)
provides a mathematical framework for estimating dynamic signals
ZðtÞ from measurements Yt. More specifically, it is centered around
finding the conditional (i.e., filtering) distribution PðZðtÞ= zjYtÞ. In
this context, we denote as “filter” an estimator of ZðtÞ that is based
on statistics of that distribution, such as its mean or variance. It can
be shown that estimators of the form MðtÞ=E½ZðtÞjYt� mini-
mize the mean squared error MSEZðtÞ=E½ðZðtÞ−MðtÞÞ2� and
are therefore termed minimum mean squared error (MMSE) es-
timators (14). In the special case of linear dynamics and Gaussian
noise, the MMSE estimator is analytically tractable through the
Kalman filter. The Kushner–Stratonovich differential equation
describes filters also for the more general case of nonlinear and
non-Gaussian models, although their practical handling is typically
challenging if not impossible. The MMSE estimator for the given
birth–death process from Fig. 1A can be shown to satisfy

dMðtÞ= ½ρ−ϕMðtÞ�dt+ V ðtÞ
MðtÞ ½dY ðtÞ− cYMðtÞdt�, [1]

with V ðtÞ=Var½ZðtÞjYt� as the estimator variance (SI Appendix,
section S.1). Note that Eq. 1 can be informally rewritten as an
ordinary differential equation driven by a sum of Dirac pulses

P
kδðt− τkÞ, with summand k stemming from the kth reaction firing

of the sensor. Between two consecutive firing times τk and τk+1, the
estimator signal MðtÞ evolves deterministically. Every time a sensor
reaction fires,MðtÞ instantaneously changes by the factor V ðtÞ=MðtÞ.
This factor can be understood as an adaptation gain that determines
how much weight is put on the correction term ½dY ðtÞ− cYMðtÞdt�:
if the filter is very certain [i.e., variance V ðtÞ small], only little cor-
rection is needed, and vice versa. Unfortunately, the adaptation gain
is analytically intractable because V ðtÞ generally involves the third-
order moment and so forth, leading to an infinite-dimensional sys-
tem of differential equations (i.e., moment closure problem).
However, two tractable filters can be derived under the as-

sumption of either weakly or highly informative measurements.
We refer to the first one as the Poisson filter, and it is based on
the assumption that cY is small, for instance, when available
resources are scarce. Because this assumption implies that
V ðtÞ=MðtÞ (SI Appendix, section S.1.3), the filter reduces to a
single differential equation

dMðtÞ= ½ρ− ðϕ+ cY ÞMðtÞ�dt+ dY ðtÞ. [2]

The second filter, called the gamma filter, is based on the fact that
for large cYZðtÞ, the filtering distribution is approximately gamma
(24) (SI Appendix, section S.1.4). This filter requires a second
differential equation corresponding to V ðtÞ (SI Appendix, Eq. 20).
Taking a systems perspective, those filters are now understood as

kinetic models driven by an external input dY ðtÞ. The goal is to
synthesize their dynamics through simple biochemical reactions
with mass-action kinetics. In the case of the Poisson filter, this is
rather straightforward because the filter is already in the form of a
valid rate equation. In particular, it describes the concentration of a
birth–death process with parameters ρ and ðϕ+ cY Þ, respectively.
Note that despite its noisy input dY ðtÞ, the estimator MðtÞ should
be as deterministic as possible. We therefore allow it to be rescaled
by a constant factor n to ensure a deterministic, high–copy-number
regime (SI Appendix, section S.1.5). Overall, the Poisson filter can
be implemented through only three reactions:

Z*
cY Z+ n×M|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sensor

Ø*
nρ

M*
ϕ+ cY Ø|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

filter

. [3]

For a given n, the abundance of the speciesM at time t is a discrete
random variable which we denote by MnðtÞ. For large n, the large
copy number limit will be approached, and the filter reactions will
become virtually deterministic. Note that this will not be the case
for the sensor reaction, whose rate depends on the abundance of
Z, which is not scaled by n. This gives us a way to realize the
solution of Eq. 2 using chemical reactions. More precisely, for
any t in the interval ½0,T�: limn→∞MnðtÞ=n =a. s.MðtÞ. Therefore, for
large values of n, the reactions in Eq. 3 give us the molecular filter
realization we seek because for such values, MnðtÞ=n≈MðtÞ.
In the case of the gamma filter, challenges arise because the

filter equations are incompatible with biophysical rate laws. We
addressed this problem by applying a suitable variable transform
½AðtÞ,BðtÞ�= f ½MðtÞ,V ðtÞ� and implementing the transformed
dynamics AðtÞ and BðtÞ and corresponding inverse transforms as
standard mass-action kinetics. A detailed derivation and list of
reactions can be found in SI Appendix, section S.1.5. Example
trajectories of both filters for different values of cY are shown in
SI Appendix, Fig. S.1.
To quantitatively check the accuracy of the filters, we com-

pared their empirical MSE to the MMSE obtained through nu-
merical integration of the Kushner–Stratonovich equation. The
results reflect the conditions of cY under which the two filters
were derived. Taken together, the filters provide a reasonable
approximation of the exact MMSE estimator along the entire
range of cY (SI Appendix, Fig. S.2).
Optimal filters can typically tolerate a substantial degree of

model mismatch. This has great practical relevance because the

A B

Fig. 1. Sensing biochemical signals. (A) Schematic diagram. The noise ZðtÞ is
modeled as a birth–death process with birth rate ρ and death rate ϕ and is
assumed to be observable only indirectly through a sensor reaction. The cor-
responding rate constant cY (i.e., sensor rate) determines how much informa-
tion about ZðtÞ is on average revealed per time unit. It consequently determines
the precision at which ZðtÞ can be estimated. (B) The two plots show realizations
of the hidden noise ZðtÞ and the corresponding sensor firings dYðtÞ.
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dynamic noise model is sometimes only poorly characterized. In
the considered example, for instance, precise knowledge of the
parameters ρ and ϕ might not be available. We performed ad-
ditional simulations and found both filters to be largely robust
with respect to parameter mismatch (SI Appendix, Fig. S.2).
Although the Poisson filter performs generally worse than the
gamma filter for little or no mismatch, it is surprisingly robust
also in case of substantial parameter variations.

Ensemble Averaging. When a filter is scaled by n, a single sensor
reaction has to produce n molecules at once. Although this could be
achieved, for instance, using DNA hybridization cascades, challenges
arise in cellular systems where the degree to which stoichiometries
can be engineered is rather limited. Ensemble averaging offers a
viable and attractive alternative to filter scaling. The idea here is to
achieve determinism by running n independent copies MðjÞðtÞ of the
original (unscaled) filter and averaging these. For example, n could
correspond to the number of identical plasmid replicates within a
cell. Similarly, one could use a population of n isogenic cells to sense
extracellular signals such as the abundance of a certain chemical in
the media. Although intrinsic fluctuations will affect the individual
instance MðjÞðtÞ, they will average out in the mixture process
MðtÞ=Pn

j=1M
ðjÞðtÞ=n if n is sufficiently large. This has important

practical implications. First, the resulting one-molecule sensors
Z→Z+M are much simpler to achieve using cellular mechanisms,
and second, they provide a cheap way to exploit biological parallelism.
This idea is related to the concept of ensemble learning (25),
where a collection of noisy algorithms add up to a single accurate
predictor, and we refer to these filter variants as “ensemble filters.”
We show in SI Appendix, section S.2, that for large n, the ensemble
Poisson filter converges to the differential equation

d
dt
MðtÞ= ρ−ϕMðtÞ+ cY ½ZðtÞ−MðtÞ�, [4]

which is reminiscent of a state observer equation—a quantity fre-
quently used in control theory. This filter variant appears partic-
ularly relevant for in vivo applications where it could be realized
through multiple replicates of a single gene that has both a con-
stitutive and an inducible promoter (see case studies below).
When comparing the ensemble Poisson filter to the Poisson

filter in terms of the MSE, one finds that for any n> 1, the en-
semble variant is guaranteed to achieve a lower MSE for any ρ,
ϕ, and cY . This is due to the fact that fluctuations of the sensor
are repressed in the ensemble filter, whereas this fails to be true
for the Poisson filter (SI Appendix, section S.2.1). For large n,
this difference can be seen by multiplying Eq. 4 with dt and
comparing it to Eq. 2: the two equations coincide except that the
term stemming from the sensor dY ðtÞ is replaced by its de-
terministic, noise-free counterpart cYZðtÞdt.
Extensions to More General Cases. The filter variants described
above are suitable in cases where the sensor is attached directly

Fig. 2. Generalized filtering circuits. (A) Schematic illustration. The signal of
interest ZiðtÞ relates to a sensed signal ZkðtÞ through an arbitrary and possibly
complex network. Optimal estimates of ZiðtÞ can be computed through Eq. 5.
(B) The 2D system identification circuit. The red species correspond to the
hidden process that consists of a birth–death process Z2ðtÞwith birth and death
rates ρZ1 and ϕZ2ðtÞ, respectively. We assume both Z1 and Z2ðtÞ to be unknown
(red nodes) but that Z2ðtÞ can be observed indirectly through sensors. The
corresponding optimal filters M1ðtÞ and M2ðtÞ are shown as green nodes.
(C) Joint state and parameter inference. After a short transient, the filter is able
to correctly identify the unknown birth rate Z1 (Upper). Even though the birth
rate is initially far off the true value, Z2ðtÞ is estimated very accurately due to
the self-adjusting property of the estimator. (D) Adaptive system identification.
We applied the filter from B to a system identification problem. In particular,
we tried to identify a birth–death process with a complex time-varying birth
rate Z1 := Z1ðtÞ modeled by the bistable Schloegl system (36). The results in-
dicate that as long as the filter adapts sufficiently fast (larger λ and cY), it is able
to track the complex system dynamics accurately (Right). However, when the
dynamics of Z1ðtÞ are fast compared with the timescale of adaptation (small λ
and cY), the performance breaks down (Left).
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Fig. 3. Noise cancellation using optimal filtering. (A) Schematic diagram of
the microRNA circuit. The expression of the transiently transfected gene X is
assumed to be context-dependent. First, it is affected by the number of
plasmids present in each cell. We assume that at time t = 0, a random number
of plasmids is deployed to each cell [nð0Þ∼NBðr,pÞwith r = 2 and p= 0.01] and
that this number decreases randomly through cell division. This is modeled
by a degradation reaction n→ 0 with rate logð2ÞnðtÞ=T0 and T0 = 15  h as the
average cell cycle duration. Furthermore, we model a dependency of the
transcription rate on a cell cycle-dependent factor CðtÞ. Overall, the tran-
scription rate of gene X is given by αnðtÞCðtÞ= αZðtÞ. The estimator gene M is
present twice on the plasmid: once attached to a Z(t)-inducible promoter pMi
and once attached to a constitutive promoter pMc. Note that in practice, pMc
is also likely to be affected by contextual noise. We therefore accounted for
an unintended dependency of this promoter on Z(t) as well (dashed arrow).
(B) Example realizations of the overall contextual noise ZðtÞ for two different
cells. Realizations of the target gene XðtÞ for small (C) and large (D) sensor
rates cY . If cY is too small, ZðtÞ cannot be captured sufficiently well, resulting in
a poor circuit performance. In contrast, if cY is reasonably large, the output
variability can be suppressed almost entirely such that XðtÞ can be expressed
at a high stability across the window of transfection.
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to the unknown signal ZðtÞ. In various practical applications,
however, a circuit might require knowledge about unknown
signals that are multiple steps away from the sensed species. For
instance, we would like to conceive a filter circuit that only uses
information of a certain gene product to make inference about
the transcription factor abundance that controls it. This requires
an extension of our filtering framework to general multivariate
scenarios. As it turns out, the MMSE estimator of any bio-
chemical species satisfies

dMiðtÞ=DiðtÞdt+Cov½ZiðtÞ,ZkðtÞ�
MkðtÞ ½dY ðtÞ− cYMkðtÞdt�, [5]

with ZkðtÞ as the species attached to the sensor, ZiðtÞ as any other
species that depends on ZkðtÞ in an arbitrary way (Fig. 2A), and
Cov½ZiðtÞ,ZkðtÞ� as the conditional covariance of those species.
The term DiðtÞ refers to the unconditional dynamics of the mean
of ZiðtÞ as dictated by the chemical master equation. Mathemat-
ically, this can be written as DiðtÞ=

P
zzAiPðZiðtÞ= zjYtÞ, with Ai

as the infinitesimal generator of the (unconditional) stochastic
process ZiðtÞ. For instance, if ZiðtÞ is a birth–death process such
as the one from Fig. 1A, then DiðtÞ= ρ−ϕMiðtÞ. Note that Eq. 5
is general, and our previously derived filters and other known
estimators can be framed as special cases of it. For instance, if
the components ZiðtÞ are constant parameters [i.e., DiðtÞ= 0],
then Eq. 5 can be understood as a continuous-time variant of
the recursive least squares algorithm (26).
Although estimator MiðtÞ in Eq. 5 may not be directly realiz-

able, an estimator that satisfies a close approximation of it is
always achievable using molecular circuits (SI Appendix, section
S.3). This will be shown in Applications and Discussion.

Applications
In the following sections, we demonstrate practical applications
of our filtering circuits using two simulation studies as well as
experimental data recorded in vitro and in vivo.

Adaptive System Identification.We use a multivariate filter to solve a
combined state and parameter estimation problem that is associated
with a biochemical system identification task. In particular, we
consider a birth–death process Z2ðtÞ with unknown but static birth
rate Z1. The corresponding multivariate estimator is realizable
through five elementary reactions (Fig. 2B) as shown in SI Ap-
pendix, section S.3.1. Our simulations demonstrate that the filter is
able to accurately identify both Z2ðtÞ and Z1 (Fig. 2C) after a short
transient. Note that this filter is able to readapt to spontaneous
changes in the birth rate Z1. This suggests an application of this
filter to scenarios in which the true birth rate Z1 slowly varies over
time, for instance, over the duration of a cell cycle. If the filter is
adjusting itself quickly enough, it should be able to track the
temporal dynamics of a time-varying and possibly complex system.
In the derived filter, the speed of adaptation depends on cY and an
additional parameter λ (SI Appendix, section S.3.1). We used this
filter to identify a birth–death process, whose birth rate is con-
trolled by a stochastic bistable switch. Fig. 2D shows that if λ and
cY are reasonably large, the filter is indeed able to closely resemble
the complex switch-like dynamics.

Cancellation of Extrinsic Noise. In the following we show how
the newly developed filters could guide the design of noise-
insensitive circuits. Although a more detailed view on this
topic is provided in SI Appendix, section S.4, we illustrate the
concept by means of an example that is representative of what
is typically encountered in vivo. In particular, we consider
a microRNA circuit that is deployed to mammalian cells
through transient transfection. The goal of the circuit is to
stably express RNA XðtÞ, but the rate at which it is transcribed
is corrupted by contextual factors. First, we assume that each
cell receives a random number of plasmid copies during de-
ployment and that the plasmids deplete randomly as cells di-
vide. We refer to the number of plasmid copies at time t as nðtÞ.
Furthermore, we assume transcription to be affected by
a slowly varying random process CðtÞ that correlates with the

Fig. 4. In vitro estimation of dynamic signals. (A) Experimental setup. The hidden signal ZðtÞ and corresponding sensor reactions YðtÞ are simulated in silico
and subsequently transferred to the reaction volume of the in vitro estimator MðtÞ, each time increasing its concentration by ΔM. In vitro dynamics are
monitored through fluorescence experiments at acquisition intervals of 1 min. (B) Biochemical implementation of the Poisson filter as a DSD cascade. The
overall circuit consists of two modules, one for production ofM and one for combined degradation and reporting. Strand displacement reactions are described
as single events with rate parameters γJ, γF, and γD. The desired birth and death rates ρ and ðϕ+ cY Þ are set by choosing appropriate initial concentrations of
gates H and D. Every time a degradation event happens, a fluorophore is irreversibly unquenched, such that the measured fluorescence is proportional to the
integral of MðtÞ (SI Appendix, Fig. S.10). (C–E) Experimental assessment of the estimator using three different signals. The simulated sensor time points when
dYðtÞ= 1 are indicated by the triangles (Dataset S1). If more than one of those time points fell into one acquisitions cycle, the respective multiples of ΔMwere
added simultaneously (indicated by the numbers above the triangles). The estimator MðtÞwas extracted by differentiating the measured fluorescence FLðtÞ as
described in SI Appendix, section S.6.1.6. C shows filtering results for a random realization of the birth–death process ZðtÞ with ρ and ϕ matching the prior
assumptions of the filter. In D and E, the filter was further tested using two artificially designed profiles ZðtÞ (i.e., single- and double-pulse).
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cell cycle (Fig. 3A). Overall, we obtain a transcription rate
hTðnðtÞ,CðtÞÞ := αnðtÞCðtÞ= αZðtÞ (Fig. 3B).
The goal is to construct an estimator MðtÞ of the cumulative

context ZðtÞ and to use this estimator as a repressor of XðtÞ through
RNA interference (RNAi) (Fig. 3A). Intuitively, the two effects are
expected to compensate for each other such that the overall effect
of ZðtÞ on XðtÞ vanishes. In fact, this idea can be framed mathe-
matically as demonstrated in SI Appendix, section S.4.
In the considered scenario, the ensemble Poisson filter is

particularly suitable to serve as an estimator because it can ex-
ploit the availability of multiple gene replicates per cell to improve
its accuracy. The geneM corresponding to this filter is present twice
on the plasmid, once attached to a constitutive promoter pMc and
once attached to a ZðtÞ-inducible promoter pMi. Note that in re-
alistic scenarios, also the constitutive version of M is likely to be
affected by contextual factors. We therefore accounted for an un-
intended dependency of this gene on ZðtÞ in our model. We per-
formed stochastic simulations of the resulting circuit that accounts
for both intrinsic and extrinsic (i.e., contextual) fluctuations (see SI
Appendix, section S.4.4, and Fig. 3 for more details). It turns out
that if the sensor rate cY of the ensemble Poisson filter is sufficiently
large, the noise canceller performs well even though it is based on
strongly simplifying assumptions [i.e., ZðtÞmodeled as a birth–death
process], and it is affected by extrinsic and intrinsic noise itself (Fig.
3 C and D). An additional case study showing noise cancellation in
a bistable switch is provided in SI Appendix, section S.4.5.

In Vitro Implementation of the Poisson Filter.As a proof of principle,
we forward-engineered and tested a DNA-based filtering circuit
in vitro as DNA strand displacement (DSD) cascades (6, 7, 27–29).
Strand displacement is a competitive hybridization reaction where
an incoming single-stranded DNA molecule binds to a comple-
mentary strand, in the process displacing an incumbent strand. This
elementary mechanism allows one to directly synthesize arbitrary
chemical reaction networks (30). Furthermore, because individual
DSD reactions can be described by conventional bimolecular rate
laws at a remarkably high precision (31), they provide a higher
degree of quantitative control compared with cellular systems.
To enable a comparison of the molecular filter with its

mathematical counterpart and the true value of ZðtÞ, only the

filter itself [i.e., the equation describing the dynamics of MðtÞ]
was implemented in vitro. The noise ZðtÞ and respective sensor
time points [i.e., the times where dY ðtÞ= 1] were simulated on a
computer, and the latter were manually transferred to the test
tube in which the filter was operated (Fig. 4A). In particular, the
concentration of MðtÞ had to be increased by a constant value
ΔM at each of those time points. Here we want MðtÞ to estimate
the concentration of ZðtÞ (as opposed to absolute copy numbers),
and thus, ΔM =V−1

Z with VZ as the reaction volume associated
with the virtual signal ZðtÞ (Fig. 4A). In reference to Eq. 2 this
would correspond to a scaling factor of n=VM=VZ at the level of
copy numbers, with VM as the volume of the test tube.
The reaction network from Eq. 2 was mapped to a DSD circuit

(SI Appendix, section S.5 and Fig. S.10) under the join-fork par-
adigm (6, 32) and quantified experimentally using calibrated
fluorescence measurements (SI Appendix, section S.6.1). An initial
perturbation experiment was performed to check the circuit’s
sensitivity with respect to small changes in M and to compute
initial estimates of kinetic parameters (SI Appendix, section
S.6.1.4). Based on those estimates, we designed three time course
experiments. The corresponding fluorescence trajectories show
that the in vitro filter resembles the ideal mathematical model at a
remarkably high precision in all three scenarios (Fig. 4 C–E).

Ensemble Filtering in Escherichia coli. Engineering biochemical
circuits and their properties in living organisms is associated with
substantial additional challenges compared with cell-free sys-
tems. It is therefore important to show that the desired circuit
characteristics are attainable using cellular mechanisms. In the
following, we demonstrate experimentally that a simple genetic
circuit in Escherichia coli can function as an optimal filter.
To check whether our circuit is indeed able to estimate a noise

signal ZðtÞ unknown to it, we must know the noise signal being
estimated. A good way to achieve this is to generate the random
signal ZðtÞ ourselves. To that end, we used an optogenetically
controlled sensor to which we can apply arbitrary light sequences
ZðtÞ. This allowed us to compare the filter estimate MðtÞ to the
true values of ZðtÞ. In practical applications, the optogenetic
sensor could be replaced by one that recognizes another signal of
interest. The procedures we followed are described next.
We used an optogenetic circuit encoded in plasmid pJT119b

(33), which expresses a fluorescent protein (GFP) at a basal rate
through a weak constitutive promoter (34). This rate can be en-
hanced through a second promoter that is inducible by green light
(Fig. 5A). Due to this particular promoter configuration and the
fact that plasmids are present in multiple copies per cell
[n≈ 50− 70 (35)], this circuit closely resembles an ensemble Poisson
filter that optimally estimates a light signal ZðtÞ generated accord-
ing to noise dynamics with a particular set of parameters ρ, ϕ. In-
deed, based on Eq. 4, there always exist a ρ and ϕ for which the
optogenetic circuit functions as an optimal filter as long as the
degradation rate of M is larger than cY . To figure out these inverse
optimal parameters for our specific optogenetic circuit, we per-
formed calibration experiments using a designed light profile Z1ðtÞ
to infer the mRNA transcription dynamics along with the param-
eters α, β, and τ that account for reporter maturation and degra-
dation. From the inferred transcription dynamics, we can get the
parameters ρ, ϕ, and cY according to Eq. 4 (see also Fig. 5 A and SI
Appendix, section S.7.5 and Fig. S.16). The inferred filter circuit
parameters allow us to assess the performance that the filter would
achieve in terms of its MSE (SI Appendix, Fig. S.16).
Finally, we tested the function of our circuit as an estimator of

ZðtÞ. We generated a random trajectory Z2ðtÞ and applied it as a
light input to our optogenetic circuit (SI Appendix, section S.7.7).
We found that the corresponding experimental fluorescence
measurements are in very good agreement with the response
predicted by the inferred filter model (Fig. 5B), indicating that
the corresponding transcriptional output MðtÞ is indeed able to
estimate ZðtÞ with high fidelity (see SI Appendix, sections S.7.5–
S.7.7, for more details).

A

B

Fig. 5. Ensemble filtering circuit in E. coli. (A) Schematic diagram. Transcription
of mRNA MðtÞ is activated by an inducible promoter pMi, whose activity de-
pends on the intensity of the applied light stimulus ZðtÞ. A basal level of tran-
scription is present due to an additional constitutive promoter pMc. Synthesis
and degradation of protein are modeled as a delay differential equation to
account for GFP maturation. To explain experimental day-to-day variability, we
allowed the protein synthesis rate α to vary across experiments. (B) Filter vali-
dation.We applied a randomly generated light sequence Z2ðtÞ to the circuit and
compared the experimental outcome to the model predictions. The mathe-
matical solution of GFP closely resembles the GFP abundance recorded by flow
cytometry. The corresponding transcriptional response MðtÞ inferred from the
model shows that this circuit yields accurate estimates of the light input ZðtÞ.
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Circuits like the one above could serve as modules for es-
timating dynamic transcription factor abundances from tran-
scribed RNAs. The estimator could be optimized to specific ZðtÞ
dynamics (characterized by ρ, ϕ) by tuning the strengths of the
promoters: the constitutive expression rate should be designed to
be close to ρ, whereas the induced transcription rate should be
close to cY := ðk−ϕÞ, where k is the degradation rate constant of
M which should satisfy k>ϕ. As shown earlier in this article, the
robustness of the filter with respect to mismatch in ρ and ϕ in-
creases with the sensor rate cY .

Discussion
Our results illustrate that a seemingly complex filtering operation
may be realizable through very simple biochemical mechanisms.
This simplicity allowed us to showcase our filtering approach
in vitro using DNA strand displacement cascades but also in vivo
using a light-inducible gene expression circuit in E. coli.
A key strength of model-based filtering techniques is that the

assumed model dynamics of ZðtÞ are steadily corrected through
a feedback control loop. This way, a filter can exploit all in-
formation about ZðtÞ that is available a priori (e.g., its autocor-
relation or mean abundance) but, at the same time, can tolerate
a substantial degree of model mismatch (SI Appendix, Fig. S.2
and Figs. 2D and 3D). The latter property appears particularly
relevant for synthetic biology where the true dynamics of a signal
ZðtÞ is often only poorly characterized.
We found that the proposed ensemble filter variants are fa-

vorable over normal ones when replicates of identical circuits
are easy to accomplish (e.g., through multiple plasmids). By
exploiting this parallelism, they lead to a damping of the sensor
noise that is inversely proportional to the ensemble size n, and as
a consequence, ensemble filters achieve a reduced MSE for all
n> 1 compared with their original counterparts.
Most importantly, however, the ensemble concept entails a

general recipe for building optimal estimators of arbitrary bio-
chemical signals, even if they are nonlinear and multiple steps away
from the sensor. In particular, they can be realized from n repli-
cations of the signal of interest ZiðtÞ, extended by a sensor reaction

and an additional (controlled) degradation (SI Appendix, section
S.3). The individual replicates serve as stochastic simulations of
ZiðtÞ to emulate its unconditional mean dynamics [i.e., DiðtÞ] as an
n-sample Monte Carlo average. As a striking implication, the mo-
ment closure problem is bypassed, facilitating applications also to
nonlinear ZiðtÞ. Another desirable side effect of replicating ZiðtÞ is
that parameter and model mismatch between the assumed and true
dynamics is reduced to a minimum.
Our simulation studies suggest several potential applications

of optimal filters to biomolecular estimation, system identifica-
tion, and the design of context-independent circuits. In contrast
to trial-and-error approaches, the circuits are derived in a prin-
cipled fashion under an MMSE criterion.
We believe that the ability to perform statistical computations

in situ will be crucial for devising robust synthetic networks.
Those will allow circuits to sense, estimate, and adapt to their
environment, facilitating context-aware designs. We envision
many potential applications, ranging from adaptive therapeutics
to self-reporting cells that estimate and display inaccessible pa-
rameters and states.

Materials and Methods
Detailed information about mathematical derivations, simulations, and ex-
perimental procedures can be found in SI Appendix. In SI Appendix, section
S.1, we provide discussions around the optimal filtering framework for
biochemical networks. The ensemble and multivariate filters are described in
SI Appendix, sections S.2 and S.3, respectively. SI Appendix, section S.4, in-
troduces a mathematical framework for noise cancellation and contains
details about the corresponding simulations. Rational design and experi-
mental methods related to the DNA-based filtering circuit are provided in SI
Appendix, sections S.5 and S.6. Experimental methods related to the bac-
terial circuit are described in SI Appendix, section S.7.
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